An Introduction to Python

This video will introduce you to the Python scripting language and cover a few basic
concepts.

Why Python?

Relatively easy to learn compared to other
languages...

— code is easy to read

— many built-in tools

Many tutorials and books on Python

Supported by ESRI for use with ArcGIS...

— all ArcGIS documentation uses Python in examples
— ESRI scripting workshops teach Python

Python is currently the scripting language most widely used by GIS users. The
language is relatively easy to learn and contains many built-in tools. In addition,
there is a large and active community of Python users that freely share knowledge
and tools that they’ve created. Another good reason for GIS users to choose Python
is that it is the language that ESRI supports for use with ArcGIS.

The Python language

It's just English with different syntax and a few new

terms...
English Python

Sentence —— = Statement — one complete instruction

Noun Object — any piece of data
Adjective —— = Property — describes an object

Verb Method — action an object can take

Python is a very concise version of English — it conveys our instructions to the
computer without any unnecessary words. We’'ll spend the next few weeks learning
the syntax of Python — i.e. how to form “sentences”. But for now, we’ll start with a
few basic terms and concepts that you’ll need to know in order to understand
Python textbooks and documentation. In Python, the term statement is used to
indicate a single complete instruction — in English, we would call this a sentence. An
object is the Python equivalent of a noun — it is any piece of data (e.g. a number, a
word, a file, etc.). Objects have properties that describe them and actions, or
methods, that they can perform.

Objects, methods, and properties
— a real world analogy

Object
Car
Properties
Model
Make
Color

Let’s use a simple real-world analogy to illustrate the concepts of object, properties,
and methods. In this analogy, our object is a car. The car can be described by
certain properties (e.g. model, make, color) and it can perform certain methods (e.qg.
drive, brake, steer). The properties and methods of an object depend on the type of
object - e.g. a car has different properties and capabilities than a computer.

Accessing an object’s properties

To get an object’s properties...

— specify the object,

— followed by a period,

— followed by the name of the property

Car.Model
1 N\

object period property

In order to get the properties of an object, we create an expression (statement part)
using the following steps: 1) specify the object name, 2) followed by a period, 3)
followed by the name of the property. When we run this expression, Python will tell
us the value of the property.

Using an object’'s methods

To use an object’'s methods...
— Same syntax as for accessing properties, but...
— followed parenthesis including parameter values:
not all methods require parameters to be specified.

parenthesis are still necessary even if no parameters
need to be specified for the method.

Car.Steer(left) Car.Brake()
7t X N

object period method parameter(s)

If we want an object to perform a method, we start off with the same syntax as for
getting an object’s property. The difference comes at the end of the expression — for
a method, we need to include parenthesis after the method name; inside the
parenthesis, we would include any necessary parameters. These parameters are
the details that Python needs in order to understand what exactly you want the
method to do. Not all methods require you to specify a parameter but you still need
to include empty parenthesis — this is Python’s clue that it should perform a method
rather than retrieve a property.

Variables

Names given to objects.
— Refer to objects by their assigned name.

When statement is run, object is used in place of
the variable.

To assign a variable:

— Specify the variable name,

— followed by the equal sign (=),
— followed by the definition.

" Sp— 4

field name =
variable = ™ object

To make our scripts more efficient, we can give hames to our objects - object names
are called variables. When we “assign a variable”, we’re simply letting Python know
what we want to call an object. To assign a variable to an object, simply specify the
name you want to give the object followed by an equal sign. The equal sign is
followed by the object itself. After you've assigned a variable to an object in your
script, you can use the variable to refer to that object.

Rules for naming objects

Must start with a letter or underscore.
Can contain letters, digits, or underscores.
No spaces.

No reserved words:

- i.e. , OF, ael, for, If, , Uy,

— reserved words change color

No quotes around variable names
— quotes are for strings (text) only

You can use any variable to name your object but you have to follow a few rules.
Variables must only contain letters, numbers, or underscores and the first character
cannot be a number. There cannot be spaces in the variable and you cannot use
reserved words (which have a different font color when typed in Python). Variables
often look like strings (i.e. text) because they contain letters and so it may be
tempting to put quotes around variables as you would with strings. But remember,
there must be NO QUOTES around variables — otherwise Python will interpret the
variable as a string instead of the object that the variable was intended to represent.

Working with variables

Use object names in a statement instead of the
object itself:

x> X = 5> Assign variables
>>> y = 7

2w XN
R Result

Case matters. Be careful about spelling and case
when using a variable...
— copy and paste to ensure correct spelling

Variables do not exist until they are assigned to an
object.

Variables are the names that we assign to objects. Whenever Python “sees” a
variable, after it is defined, it will substitute the object represented by the variable
into the expression. When typing variables in your script, it is important to spell the
variable exactly the same every time — including the case. For longer variable
names, | suggest copying and pasting to ensure there are no typos. Also keep in
mind that you cannot refer to a variable until after you’ve defined it in your script —
otherwise Python won’t know what the variable means.

Opening Python for ArcGIS

1-Zp Open
Accessones % Run as administrator
Agrsoft Troubleshoot compatibility
ArcGIS . . Open file location
ArcCatalog 1
ﬁ ArcGIS .‘-d?vfm:!utcr IZp ’
CRC SHA »

® ArcGlobe103
Q ArcMap103
@ ArcScene103

Scan with System Center Endpoint Protection...

Br

Sensitive Data Manager »

. = ArcGIS for Desktop Help Pin to Taskbar
Right-click Desitop Tools Pinto stat Menu N
— Restore previous versions
=
odute Docs Send to »

. Python (command line cut
& Python Manuals Copy

CamStudio 2.7

Dropbox Delete

FileZilla FTP Client ~|% Rename

Properties

4 Back

10

For this course, it is important to use the version of python that is installed with
ArcGIS (i.e. Python v2.7.8) — this will ensure that we don’t have to worry about any
setup or compatibility issues when using ArcGIS tools in a script. To open the
correct version of Python, go to Start > Programs > ArcGIS > Python 2.7 > IDLE
(Python GUI). For more convenient access in the future, you can right-click on
IDLE, and select either “Pin to Taskbar” or “Pin to Start Menu”.

Python Shell
Fie Edt Shel Debug Options Windows Help

0 32 bit (Intel)] on win32

Python 2.6.5 (r265:79096, Mar 19 2010, 21:48:26) [MSC v.150 =

The Interface - Python IDLE

CIEX

Type "

<. | The Interactive Window

nforma

e

B o o L

Pey

n IDLE Runs one statement at a time

ma

eoppag » - Script feedback displays here

int

st ® Error messages display here

ectio

prnal

exter

the I

nternets

BT s

IDLE 2.6.5

\{ Ready to accept command

0\

B L e

Ln: 13 Col: 4

"

In this course, we will use IDLE (Integrated Development and Learning
Environment) as our Python interface. IDLE is a basic and reliable interface which

comes with the Python installed by ArcGIS.

The IDLE interface has two windows that you’ll use when developing scripts. The
first window is the “Python Shell” which is an interactive window that allows you to
run single statements and receive script feedback and error information. This

window allows you to test specific statements when developing your script.

Python Shell [i=1(73]
Untitled
File Edit Format Run Options Windows Help

New Window Ctr+N [-
Open... Ctrl+0

Recent Files

Open Module... Alt+M

Class Browser Alt+C

Path Browser

Save Ctrl+S

Save As... Ctrl+Shift

Save Copy As... Alt+Shift+

Print Window Ctrl+P

Close Alt+F4

Exit Ctri+Q

Ln: 1 Cok: 0
12

When you start up IDLE, the first window that will appear is the Python Shell.
Through the Shell, you can open up a new script window.

12

The Interface - Python IDLE

Automated_mapping.py - C:\Python_ArcPy_Demo\Automate_mapping\Automated_mapping. py
File Edit Format Run Options Windows Help

Ff import modules... -
arcpy, ©os, sys, win32com.client

dictionary of months. o

monthDect = (1:"Jan",2:" Scri pt Window 6:"Jun”, 7:"Jul", B "A

Enter scripts here
Can save scripts in this window

excel fil

sieize = oo = Will run all active statements
get excel application...
x1lApp = win32com.client.Dispatch ("Excel.Application”)

shows changes excel application...
®1App.Visible=1

, e i Line number
open an existing workbook...

workbook = xlAnn.Workbooks.OnenixlFilel _:_]
Ln: 1 Col: 0

13

The script window in IDLE is where you will type your actual script. IDLE color
codes certain information in a script to help you more easily recognize certain data
types and functions. The colors will depend on the configuration of IDLE on your
computer.

13

